Product categories

Have You Seen

B0505S-1WR3 MORNSUN Isolated DC - DC Converter

B0505S-1WR3 MORNSUN Isolated DC - DC Converter

Mornsun B0505S-1WR3 DC-DC Isolated ConverterMORNSUN B0505S 1WR3 1 watt, 5 Volts Isolated DC to DC Po..

Rs.106.20 (inc GST)
Rs.90.00 + GST

SKU: 2969 | DAE663
Stock: 47
XL1509-Adj E1 Buck DC to DC Converter IC (SOP8L Package)

XL1509-Adj E1 Buck DC to DC Converter IC (SOP8L Package)

XL1509-Adj E1 Buck DC to DC Converter IC (SOP8L Package)XL1509-Adj E1 Buck DC to DC Converter IC, Ad..

Rs.25.96 (inc GST)
Rs.22.00 + GST

SKU: 3657 | DAF397
Stock: 485

Sensors and Transducers



Sensors and Transducers

Simple stand alone electronic circuits can be made to repeatedly flash a light or play a musical note, but in order for an electronic circuit or system to perform any useful task or function it needs to be able to communicate with the "real world" whether this is by reading an input signal from an "ON/OFF" switch or by activating some form of output device to illuminate a single light and to do this we use Transducers.

Transducers can be used to sense a wide range of different energy forms such as movement, electrical signals, radiant energy, thermal or magnetic energy etc, and there are many different types of both analogue and digital input and output devices available to choose from. The type of input or output transducer being used, really depends upon the type of signal or process being "Sensed" or "Controlled" but we can define a transducer as a device that converts one physical quantity into another.

Devices which perform an input function are commonly called Sensors because they "sense" a physical change in some characteristic that changes in response to some excitation, for example heat or force and covert that into an electrical signal. Devices which perform an output function are generally called Actuators and are used to control some external device, for example movement. Both sensors and actuators are collectively known as Transducers because they are used to convert energy of one kind into energy of another kind, for example, a microphone (input device) converts sound waves into electrical signals for the amplifier to amplify, and a loudspeaker (output device) converts the electrical signals back into sound waves and an example of this is given below.

 

Simple Input/Output System using Sound Transducers

Input-Output_System_using_Sound_Transducers

 

There are many different types of transducers available in the marketplace, and the choice of which one to use really depends upon the quantity being measured or controlled, with the more common types given in the table below.

 

Common Transducers

 

Quantity being
Measured
Input Device
(Sensor)
Output Device
(Actuator)
Light Level Light Dependant Resistor (LDR)
Photodiode
Photo-transistor
Solar Cell
Lights & Lamps
LED's & Displays
Fibre Optics
Temperature Thermocouple
Thermistor
Thermostat
Resistive temperature detectors (RTD)
Heater
Fan
Force/Pressure Strain Gauge
Pressure Switch
Load Cells
Lifts & Jacks
Electromagnet
Vibration
Position Potentiometer
Encoders
Reflective/Slotted Opto-switch
LVDT
Motor
Solenoid
Panel Meters
Speed Tacho-generator
Reflective/Slotted Opto-coupler
Doppler Effect Sensors
AC and DC Motors
Stepper Motor
Brake
Sound Carbon Microphone
Piezo-electric Crystal
Bell
Buzzer
Loudspeaker

 

Input type transducers or sensors, produce a proportional output voltage or signal in response to changes in the quantity that they are measuring (the stimulus) and the type or amount of the output signal depends upon the type of sensor being used. Generally, all types of sensors can be classed as two kinds, passive and active.

Active sensors require some form of external power to operate, called an excitation signal which is used by the sensor to produce the output signal. Active sensors are self-generating devices because their own properties change in response to an external effect and produce an output voltage, for example, 1 to 10v DC or an output current such as 4 to 20mA DC. For example, a strain gauge is a pressure-sensitive resistor. It does not generate any electrical signal, but by passing a current through it (excitation signal), its resistance can be measured by detecting variations in the current and/or voltage across it relating these changes to the amount of strain or force.

Unlike the active sensor, a passive sensor does not need any additional energy source and directly generates an electric signal in response to an external stimulus. For example, a thermocouple or photodiode. Passive sensors are direct sensors which change their physical properties, such as resistance, capacitance or inductance etc. As well as analogue sensors, Digital Sensors produce a discrete output representing a binary number or digit such as a logic level "0" or a logic level "1".

 

Analogue and Digital Sensors

Analogue Sensors

Analogue Sensors produce a continuous output signal or voltage which is generally proportional to the quantity being measured. Physical quantities such as Temperature, Speed, Pressure, Displacement, Strain etc are all analogue quantities as they tend to be continuous in nature. For example, the temperature of a liquid can be measured using a thermometer or thermocouple which continuously responds to temperature changes as the liquid is heated up or cooled down.

 

Thermocouple used to produce an Analogue Signal

Thermocouple_used_to_produce_an_Analogue_Signal

 

Analogue sensors tend to produce output signals that are changing smoothly and continuously which are very small in value so some form of amplification is required. Then circuits which measure analogue signals usually have a slow response and/or low accuracy. Also analogue signals can be easily converted into digital type signals for use in microcontroller systems by the use of analogue-to-digital converters, or ADC's.

 

Digital Sensors

As its name implies, Digital Sensors produce a discrete output signal or voltage that is a digital representation of the quantity being measured. Digital sensors produce a Binary output signal in the form of a logic "1" or a logic "0", ("ON" or "OFF"). This means then that a digital signal only produces discrete (non-continuous) values which may be outputted as a single "bit", (serial transmission) or by combining the bits to produce a single "byte" output (parallel transmission).

 

Light Sensor used to produce an Digital Signal

Light_Sensor_used_to_produce_an_Digital_Signal

 

In our simple example above, the speed of the rotating shaft is measured by using a digital LED/Opto-detector sensor. The disc which is fixed to a rotating shaft (for example, from a motor or wheels), has a number of transparent slots within its design. As the disc rotates with the speed of the shaft, each slot passes by the sensor inturn producing an output pulse representing a logic level "1". These pulses are sent to a register of counter and finally to an output display to show the speed or revolutions of the shaft. By increasing the number of slots or "windows" within the disc more output pulses can be produced giving a greater resolution and accuracy as fractions of a revolution can be detected. Then this type of sensor arrangement could be used for positional control.

Compared to analogue signals, digital signals or quantities have very high accuracies and can be both measured and "sampled" at a very high clock speed. The accuracy of the digital signal is proportional to the number of bits used to represent the measured quantity. For example, using a processor of 8 bits, will produce an accuracy of 0.195% (1 part in 512). While using a processor of 16 bits gives an accuracy of 0.0015%, (1 part in 65,536) or 130 times more accurate. This accuracy can be maintained as digital quantities are manipulated and processed very rapidly, millions of times faster than analogue signals.

In most cases, sensors and more specifically analogue sensors generally require an external power supply and some form of additional amplification or filtering of the signal in order to produce a suitable electrical signal which is capable of being measured or used. One very good way of achieving both amplification and filtering within a single circuit is to use Operational Amplifiers as seen before.

 

Signal Conditioning

As we saw in the Operational Amplifier tutorial, op-amps can be used to provide amplification of signals when connected in either inverting or non-inverting configurations. The very small analogue signal voltages produced by a sensor such as a few milli-volts or even pico-volts can be amplified many times over by a simple op-amp circuit to produce a much larger voltage signal of say 5v or 5mA that can then be used as an input signal to a microprocessor or analogue-to-digital based system. Therefore, an amplification of a sensors output signal has to be made with a voltage gain up to 10,000 and a current gain up to 1,000,000 with the amplification of the signal being linear with the output signal being an exact reproduction of the input, just changed in amplitude. Then amplification is part of signal conditioning. So when using analogue sensors, generally some form of amplification (Gain), impedance matching, isolation between the input and output or perhaps filtering (frequency selection) may be required before the signal can be used and this is conveniently performed by Operational Amplifiers.

Also, when measuring very small physical changes the output signal of a sensor can become "contaminated" with unwanted signals or voltages that prevent the actual signal required from being measured correctly. These unwanted signals are called "Noise". This Noise or Interference can be either greatly reduced or even eliminated by using signal conditioning or filtering techniques as we discussed in the Active Filter tutorial. By using either a Low Pass, or a High Pass or even Band Pass filter the "bandwidth" of the noise can be reduced to leave just the output signal required. For example, many types of inputs from switches, keyboards or manual controls are not capable of changing state rapidly and so low-pass filter can be used. When the interference is at a particular frequency, for example mains frequency, narrow band reject or Notch filters can be used to produce frequency selective filters. Where some random noise still remains after filtering it may be necessary to take several samples and then average them to give the final value so increasing the signal-to-noise ratio.

 

Op-amp Filters

 

Op-amp_Filters
Low Pass Filter High Pass Filter

Either way, both amplification and filtering play an important role in interfacing microprocessor and electronics based systems to "real world" conditions. In the next tutorial about Sensors, we will look at Positional Sensors which measure the position and/or displacement of physical objects meaning the movement from one position to another for a specific distance or angle.

 


Reproduced with permission from Wayne Storr

http://www.electronics-tutorials.ws/io/io_1.html

Written by Wayne Storr

Wayne Storr



Website: